INTRO TO DATABASES

CHEATSHEET

Connecting to MongoDB and using Mongoose, a Node]S library that allows MongoDB integration

MongoDB Terminology

Database
A database is used to store all collections.

Collection

Stores a number of documents. A collection should store
documents of the same type, although this constraint is
not explicitly enforced by MongoDB.

Document
Each record in a collection is a document. Documents are
composed of key / value pairs.

Objectld

The Objectld class is the default primary key for a
MongoDB document and is usually found in the _id field
in an inserted document. All documents are
automatically assigned a unique id when added to a
collection.

Mongoose Terminology

Schema

A description of the data structure. A Schema defines the
field names and their corresponding time, which helps
with validation, defaults, and other options in our
models.

Model

A model is the primary tool for interacting with
MongoDB. It is a fancy constructor for a document.
Models are responsible for creating and reading
documents from the underlying MongoDB database.

Validation

By default, MongoDb does not require the documents in
a collection to have the same schema. In other words, the
documents do not have to have the same fields and data
types. Validation allows you to define the structure of the
documents in a collection.

If a document does not fit the schema, the insertion will
be rejected.

Schema Types

String - Text

Number - Aninteger

Date - A single moment in time
Buffer - Binary data

Boolean - One of {true, false}

Mixed - "Anything goes". If set to mixed, any other
type will be accepted

Objectld - A unique ID, typically used to identify
documents

Array - A list of values

const someSchema = new Schema(3
names : [String],
items : Arzray,

£);

You can and should specify the type of the elements inside
an array, as in this example. Names has a specified type of
elements in the array while items does not.

Mongoose Installation
Add the Mongoose package to your project

$ npm install --save mongoose

Import Mongoose

The Mongoose package needs to be included in every
JS file it is used in.

const mongoose = require("mongoose");

Imports the package and saves to the constant mongoose

Setting Up Atlas

Atlas is an online service that hosts Mongo databases.
Sign up at www.mongodb.com/cloud/atlas. Create a
cluster, a user with at least read write permissions, and
connect to your project.

INTRO TO DATABASES

CHEATSHEET

Connecting to MongoDB and using Mongoose, a Node]S library that allows MongoDB integration

Connect to MongoDB

Use your SRV from our MongoDB provider, Atlas, to
connect with Mongoose.

const mongoConnectionURL = "mongodb+sxv://
USERNAME : PASSWORD@DB .mongodb .net/test?
retryWrites=true";
const databaseName = "someDatabaseName";
const options = %
useNewUrlParser: true,
useUnifiedTopology: true,
dbName: databaseName,

[

mongoose.connect(mongoConnectionURL, options)
.then(() => console.log("Connected."))
.catch((error) => console.log(Error
connecting to MongoDB ${errort’));

Here mongoURL is set to the SRV given for a cluster on Atlas

Creating a Schema

const StudentSchema = new mongoose.Schema({

name : String,
age : Number,
classes : [String],

£);

Here we have created a schema with attributes name, age,
and class. Name is a string. Age is a number. And classes are
an array of the specific type, String.

Creating a Model

A model is compiled from a Schema.

module.exports = mongoose.model ("ModelName",
StudentSchema) ;

Here we created a model based on the schema we defined
above. Remember that the first argument specifies the name
of the collection.

Finding a Document

We will be using queries to find documents in a collection.

Defining a Query

A query describes how to filter documents to specify
which documents to return.

const emptyQuery = {%;

An empty query, as above, returns all documents.

const query = i name: "Tim", age: 21 %;

This query would return all documents with the name Tim
and the age 21.

Finding with a Query

Below are two ways to find using a query.

Student.find(query)
.then((students) =>
console.log(found ${students.length?’));

Find returns a Promise with all documents that match the
query. Here, our anonymous function takes the returned
documents and logs some information.

Student.findOne (quexy)
.then((student) =>
console.log(found ${student.name?’));

Find one returns only one document that matches the query.

INTRO TO DATABASES

CHEATSHEET

Connecting to MongoDB and using Mongoose, a Node]S library that allows MongoDB integration

Finding Documents with a Certain
Key-Value Pair

Below are two ways to find a document with a certain
key-value pair.

Student.find({ key : someValue })
.then((student) => console.log("Found"));

Student.find(3}%)
.where(key) .equals(someValue)

.then((student) => console.log("Found"));

Inserting a Document

const student = new Student(3
name: “myname",
age: 20,
classes: ["weblab"],

£)

student.save()
.then((student) => console.log("Inserted"))

We create a new Student document and then save it to insert
the document.

Updating a Document

Student.findOne (quezxy)
.then((student) => 3
student.fieldToUpdate = newValue;
student.save()

£);

We use find one to ensure that we only update one
document.

Deleting a Document

Student.deleteOne(quexry)
.then((student) => console.log("Deleted"));

This only deletes one document that matches the query.

Student.deleteMany (quezry)
.then((student) =>
console.log("Deleted many documents"));

This only deletes one document that matches the query.

Common Mongo Errors

Make sure you've installed and imported Mongoose.

If connection issues to Atlas, try:
* checking the validity of your Atlas SRV
* restarting your server and try again

Helpful Resources

https://mongoosejs.com/docs/index.html
https.://gist.github.com/subfuzion/9236165

https://www.mongodb.com/collateral/quick-
reference-cards

